
AID: An Adaptive Image Data Index for Interactive
Multilevel Visualization
Saheli Ghosh Ahmed Eldawy Shipra Jais

Computer Science and Engineering
University of California, Riverside
{sghos006,eldawy,sjais001}@ucr.edu

Abstract—Visualization has become an integral part of big
data management and exploration. Big spatial data is visualized
on a map by processing the geometry of the data as well as
other attributes. To speed up big spatial data visualization, two
visualization indexes are currently available, image indexes and
data indexes. Image indexes provide an interactive visualization
but require a long indexing time, while data indexes are fast to
build but are not interactive for big data. This paper introduces
the first adaptive visualization index that combines both data
and images to provide a scalable, interactive visualization while
minimizing the index size and index construction time. They key
idea is to identify the regions that are costly to visualize and
store them as partial images. The remaining regions are stored
as raw data and are visualized on-the-fly at query time. The
preliminary results show that the proposed index can provide
highly interactive visualization with a minimal indexing time.

I. INTRODUCTION

In the recent years, there has been an enormous growth
of spatial data. Interactive visualization of such big spatial
data is important for scientists in various domains. It helps
in identifying interesting patterns and anomalies which are
usually hard to detect.

A usual approach for interactive big spatial data visualiza-
tion is via multilevel images which put fixed-sized tiles into a
pyramidal structure to provide visualizations at different zoom
levels, e.g., Google Maps, Bing Maps and HadoopViz [1].
Since the number of tiles increases exponentially with each
zoom level, an efficient indexing technique is required to
store these tiles. For example, most web maps provide 18
zoom levels with up-to 90 billion tiles. Figure 1 highlights
the two existing indexing techniques, namely, image indexes
and data indexes. (1) In image indexes, all non-empty tiles
are pregenerated in a preprocessing phase and are stored in a
simple hash index by their tile ID. The visualization process
becomes almost constant time as it just fetches tiles from the
image index. This technique is helpful for highly reusable
visualizations which are visualized by millions of users but
it comes at a very expensive preprocessing phase to build the
index [1]. (2) In data indexes, a traditional spatial index, e.g.,
R-tree, is constructed and used to retrieve the desired data and
visualize it upon user request. Since these traditional indexes
are designed mainly to answer range queries, they are only
useful when the query result is small enough to be visualized
on the fly.

This paper proposes the Adaptive Image-Data index (AID),
the first adaptive multilevel indexing scheme for big spatial

data visualization. In contrast to the existing systems, which
either generate image or data indexes, it balances the pro-
cessing overhead of the two methods and creates an index
which contains both image and data. Figure 1 highlights the
key idea of the proposed index. Based on a visualization cost
model that we devise, the index identifies a subset of tiles to
be pregenerated as image tiles, and another subset to be stored
as data tiles. This approach adds a few data tiles to replace
a large number of image tiles from the pyramid on the left.
Furthermore, the index provides a tuning parameter θ that can
balance the number of image and data tiles.

The main idea is to utilize the sparse nature of the spatial
data in a way that we generate the densely populated spatial
locations as image indexes whereas leave the lighter spaces as
data indexes.

II. RELATED WORK

The work in visualization can be classified into non-spatial
and spatial visualization. Spatial visualization is further classi-
fied into no indexes, image indexes, data indexes, and adaptive
indexes, as detailed below.

There are a few spatial data visualization like [9], [10], [11]
which focus on producing spatial visualization by scanning all
the input data without the help of any indexes. Therefore, they
cannot efficiently handle big datasets.

Image indexes like Google Maps and HadoopViz [1] prepro-
cess the data to produce partial images which are organized
into an image index. But with increasing zoom levels, the
number of partial images in the index grows exponentially
resulting in immense growth of indexing time and index size.

The data indexes, on the other hand, build indexes over the
raw data to speed up the visualization queries. For example,
traditional spatial indexes [3], [2] can be used to speed up the
spatial selection query that precedes the visualization query.
They utilize the indexes efficiently to retrieve a small amount
of data for visualization which does not apply to all spatial
visualizations.

The proposed work, AID, is the first adaptive index which
strikes a balance between the above mentioned image and data
indexes.It can scale up to tera bytes of data without losing the
interactivity while keeping a very low preprocessing time and
storage overhead.

Data IndexImage Index

Adaptive Image+Data Index

Image tile
Data tile
Empty tile

Quad-tree [2]

R-tree [3]

Proposed work
Web maps
HadoopViz [1]
Shahed [4]

Tableau [5]
VAS [6]
EarthDB [7]
Google Fusion Tables [8]

Fig. 1. The proposed adaptive index reaches a balance between the image index and the data index

III. THE PROPOSED INDEX

In this section we describe our proposed index. The first
section describes the various aspects of this index construction,
whereas the next section describes how this index facilitates
the visualization query.

A. AID Index: Construction

The index construction phase is responsible of processing
the input data and generating the proposed AID index. We have
implemented this index construction process in the Hadoop
distributed environment and has implemented as a MapReduce
program that reads a big spatial input data set from HDFS and
writes the constructed index back to HDFS. Index construction
is an offline phase which is carried out before users start
visualizing the data. After the index is constructed, users can
use visualization query to interactively visualize the data.

There are two main design objectives of the index construc-
tion process, minimize the index size and minimize the index
construction time. At the same time, it has to deal with very
large datasets and an exponentially increasing number of tiles
with each increasing zoom level for the desired visualization.
To overcome these challenges, our proposed index uses a
mix of image and data tiles so that image tiles are only
pregenerated for the regions that are dense while data tiles
cover all the remaining regions that can be visualized on-
demand. The main observation is that not all the tiles are equal
from a data management perspective. For example, a tile that
covers an entire country is more expensive to visualize than a
tile that covers a city. Similarly, a tile that covers a city with a
lot of data, e.g., New York City, is more expensive to visualize
than a city like Palm Springs in California with fewer records.

The proposed index follows a multilevel pyramid layout. In
a traditional image index, a quad-tree structure is implemented
to generate image tiles at different levels. For example, level 0
which is the topmost level has one single image of a particular
resolution (say 256×256). Level 1, will have four image tiles

generated from the parent tile at level 0, representing the same
image, with each tile having the same resolution as that of the
parent tile. In a nutshell, as the levels increase, the number
of tiles increase 4 times from the previous level and a more
closer view of the existing image is available.

The main drawback of this image index is the growth in
the number of tiles. Since the number of tiles increases four
times with each increasing levels, it increases both the index
size and the index construction time. On reaching level 10,
the number of tiles exceeds a million and for a large dataset,
it often fails to generate tiles beyond level 10.

The proposed AID index focuses on reducing the number
of tiles which reduces both the index size and the index
construction time. The key idea is that not all the tiles are
equal from a data management perspective.

For simplicity, this paper adopts a simple cost model that
relies only on the size of the data in bytes. Based on this
design, we define a size threshold θN where tiles with a data
size larger than θN are considered expensive and tiles with a
data size that is less than or equal to θN are considered cheap.
These expensive tiles are pregenerated and materialized as an
image. The inexpensive tiles cover a small amount of data and
can be generated in real-time. These tiles do not need to be
pregenerated and can be stored as a data file, e.g., CSV file,
that contains a set of records in their raw representation.

A more sophisticated cost model can be easily plugged into
the proposed AID index, with similar results and operation. We
however chose a simple model to emphasize on the usability
of the concept rather than its efficiency.

The number of data and image tiles are dependent on the
value of θN . With increasing θN , the number of image tiles
decreases and the number of data tiles increases. In addition to
the input data and size threshold θN , the user also provides the
number of zoom levels Z. The number of zoom levels defines
the maximum zoom level that the user wants to visualize using
the index that will be constructed.

To store the AID index on disk, only image and data tiles
need to be stored. Image tiles are stored as individual images
in .png formats whereas the data tiles are stored similar to that
of the input format which is usually a .CSV format with one
record per line. Storing one file per tile provides the flexibility
of constructing the index in a purely distributed manner where
each file can be generated and stored in a different machine.
All of these files are then moved to the visualization server
for the user to execute their respective visualization query.

B. Visualization Query

For executing visualization query we need visualization
server. The visualization server uses the AID index to provide
an interactive visualization interface. The main goal is to
minimize the query processing time and provide a real-time
experience to the end users.

In HadoopViz [1], all tiles are materialized as images and a
Google-Map-based web interface was used which only needs
to access an image tile given its ID. This makes the system
extremely interactive. However, since AID has a mixture of
data and image tiles, it is a challenging task to maintain the
same level of interactivity while generating images from data
in runtime.

Our proposed visualization server intercepts the call to
retrieve a tile and direct it to our AID index. We define a
single query, GetTile, that the visualization server processes
to fetch an image tile or generate an image from a data tile to
support different kinds of Google-Map-like interactivity.

The primary link between the front-end visualization in-
terface and the visualization server is the query GetTile. The
input is a tile ID and the output is an image that represents
this tile. Unlike most applications that use Google Maps Tiling
API to retrieve existing files from disk, our server intercepts
Google Maps API calls and redirect them to the AID index
to retrieve or produce the corresponding image. Despite the
index containing both image and data tiles, the return value of
the GetTile query is always an image to be displayed to the
user.

When a user requests a tile, the server looks into the index
for an image tile by searching for an image that corresponds to
the requested tile. If found, it returns that pregenerated image.
If an image tile is not found for the corresponding requested
image, the server then checks for a data tile with the same ID.
If found, it reads the data tile and generates the image on the
fly before returning it to the server.

It is needless to say, image tiles are the fastest to process
as the server simply needs to fetch the requested image tile
which hardly involves any computation. Data tiles require
more processing time to load and compute the records of the
data file and generate an image from it. This is where the
threshold θN defined in the index construction phase becomes
an important factor. Since the proposed index construction
algorithm limits the size of a data file to the threshold θN , the
processing time of a data is upper-bounded by that threshold
which should ensure an interactive response depending on the
value of θN . However, a relatively high value for θN can affect

TABLE I
DATASETS

Dataset Size # records Description
SPORTS 590 MB 1.8 M Sporting areas
LINEAR WATER 6 GB 5.3 M Linear hydrography
ROADS 7.7 GB 20 M Roads
ALL NODES 96 GB 2.7 B All points on the map

 1

 10

 100

 8 10 12 14

ROADS

 1

 10

 100

 8 10 12 14

LINEARWATER

 10

 100

 1000

 8 10 12 14

ALL NODES

T
im

e
in

 m
in

u
te

s
(L

o
g

 s
ca

le
)

Levels
AID HadoopViz Data Index

Fig. 2. Index construction time

the interactivity adversely, making the problem of finding an
optimal value for θN extremely significant.

IV. PRELIMINARY RESULTS

This section provides a few preliminary results to assess
the applicability of the proposed idea. We aim at establishing
three main points in this section: i) the proposed index requires
much less time in index creation than traditional image-only
indexes, ii) the index size is smaller than the existing image
index such as in HadoopViz [1], and iii) it is as interactive as
the image-only index.

In this section we primarily measure the i) index construc-
tion time, ii) index size and iii) query processing time.

Table I lists the datasets that we use. The datasets are
extracted US Census Bureau TIGER files and from Open-
StreetMap.

The proposed AID index is compared to two baselines, an
image index built using HadoopViz [1] and an R-tree (STR)
data index using SpatialHadoop [12].

Figure 2 shows the index construction time for three differ-
ent datasets. On the x-axis, we change the number of levels
from 7 to 14 while the y-axis shows the index construction
time in minutes on a log scale.

There are three key observations in this experiment. First,
the proposed AID index construction is consistently faster, in
comparison to HadoopViz, with up-to an order of magnitude
speedup. Second, the index construction time using data index
is flat as it does not depend on the zoom levels. However, as
shown later in Section IV, the query processing time of data
indexes is much higher than the proposed index. Third, for all
datasets, HadoopViz failed to generate an image-index with
14 levels which contains up-to 90 million tiles. On the other
hand, AID easily scaled for 14 levels as it can greatly cut
down the number of generated tiles due to the proposed tile
classification and the novel index layout.

Figure 3 depicts the index size, in terms of number of tiles,
for different datasets. Like previous experiments, on the x-axis

 100

 1000

 10000

 100000

 8 10 12 14

ROADS

 10

 100

 1000

 10000

 100000

 8 10 12 14

LINEARWATER

 1000

 10000

 100000

 1e+06

 8 10 12 14

ALL NODES

N
u

m
b

er
 o

f
T

ile
s

(L
o

g
 S

ca
le

)

Levels
AID Image AID Data+Image HadoopViz Data Index

Fig. 3. Index size in terms of number of tiles

we change the number of levels Z, while the y-axis shows the
number tiles.

We also notice that for a small number of levels, both
HadoopViz and AID produce almost the same index size
which indicates that Z is too small to generate many data
tiles. For smaller levels, the index size of data index can be
significantly larger than both HadoopViz and AID, but they
surpass the data index size at higher levels as they generate
more image tiles. The size of image index in HadoopViz is an
upper bound for the size of AID as it generates one image tile
for each non-empty tile while AID can reduce this number
by generating data tiles. As the number of levels increase,
especially with large datasets, the size of HadoopViz index
exponentially explodes while AID keeps it under control. For
14 levels, HadoopViz fails to generate an index with medium
and large datasets as it takes too long to execute.

The next experiment describes the performance of the
visualization query for the AID index. In this experiment,
we generate a benchmark that comprises a set of random tile
positions. We choose 1000 tiles at random at level 9 and add
all of them to the benchmark. Additionally, we add all the
ancestors of the generated tiles, up-to the root tile, to the
benchmark. This benchmark simulates the real workload of
users zooming in from the root tile to a chosen location of
the image. We measure the running time for each individual
tile and report them in two different ways. For data indexes,
we convert each tile to the spatial region covered by the tile
and run a range query that selects the records in that index
and visualize them. While for image indexes, we just fetch the
specific image tile.

Figure 4 shows the histogram of the running times of the
queries. Each bar reports the total number of tiles that were
processed in a specific time interval. The key finding in this
experiment is that AID serves the majority of the queries in
less than 500 milliseconds and the entire set of requested tiles
in less than a second which makes it very interactive to end
users. Figure 4(b) show similar results for the data index where
all tiles are generated on-the-fly. While it can process some
tiles in a couple of seconds, the performance degrades when
processing large tiles that cover a big amount of data.

V. FUTURE SCOPE AND CONCLUSION

This paper introduced AID index as the first adaptive
visualization index that integrates partial images with data in

1

10

100

1000

10000

0.0 0.004 0.3 0.9

Data TilesImage Tiles

Time (Secs)

N
u
m

b
er

 o
f

T
ile

s

(a) AID index on SPORTS

1

10

100

1000

10000

0.0 2.0 3.0 4.0 5.0 9.0 13.0 17.5

Time (Secs)

N
u
m

b
er

 o
f
T
ile

s

(b) Data index on SPORTS

Fig. 4. A histogram of the running time of the visualization query

the same index. The key idea is to identify the regions that are
expensive to visualize and store them as pregenerated images
while storing the remaining regions as raw data and produce
the visualizations on the fly. The index construction algorithm
uses the sparse distribution of spatial data in order to minimize
the index construction overhead while satisfying the user
interactivity requirements. We also presented a visualization
query that uses the AID index to provide an interactive web-
based user interface for end users.

This paper opens many research problems directed towards
building a more sophisticated system which we plan to address
in our future research. Below we enlist four such research
directions.

1) The current index uses only the data size to classify tiles.
We can extend this by employing other parameters such
as a desired index size, indexing time, or query time.

2) As mentioned previously, finding an optimal threshold
value for the size of the tile is an important factor for
this design.

3) Close the loop by feeding back the user behavior from
the visualization server into the indexing process, which
aim to address in future.

4) Propose a more sophisticated index layout that can com-
bine many small files into a few big files so as to further
minimize the indexing time and index size.

REFERENCES

[1] A. Eldawy et al., “HadoopViz: A MapReduce Framework for Extensible
Visualization of Big Spatial Data,” in ICDE, 2015.

[2] H. Samet, “The Quadtree and Related Hierarchical Data Structures,”
ACM Computing Survey, 1984.

[3] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD, 1984.

[4] A. Eldawy et al., “SHAHED: A MapReduce-based System for Querying
and Visualizing Spatio-temporal Satellite Data,” in ICDE, 2015.

[5] R. Wesley et al., “An Analytic Data Engine for Visualization in Tableau,”
in SIGMOD, Athens, Greece, 2011.

[6] Y. Park et al., “Visualization-aware Sampling for Very Large Databases,”
in ICDE, 2016.

[7] G. Planthaber et al., “Earthdb: scalable analysis of MODIS data using
scidb,” in BigSpatial, 2012.

[8] H. Gonzalez et al., “Google Fusion Tables: Web-centered Data Man-
agement and Collaboration,” in SIGMOD, 2010.

[9] “Todd Mostak. An Overview of MapD (Massively Parallel Database).
Harvard Technical Report.”

[10] L. Battle et al., “Dynamic Prefetching of Data Tiles for Interactive
Visualization,” in SIGMOD, 2016.

[11] “Mapzen,” May 2017, https://mapzen.com/.
[12] A. Eldawy et al., “SpatialHadoop: A MapReduce framework for spatial

data,” in ICDE, 2015.

